1,542 research outputs found

    Parameterized complexity of machine scheduling: 15 open problems

    Full text link
    Machine scheduling problems are a long-time key domain of algorithms and complexity research. A novel approach to machine scheduling problems are fixed-parameter algorithms. To stimulate this thriving research direction, we propose 15 open questions in this area whose resolution we expect to lead to the discovery of new approaches and techniques both in scheduling and parameterized complexity theory.Comment: Version accepted to Computers & Operations Researc

    Hitting Long Directed Cycles Is Fixed-Parameter Tractable

    Get PDF

    Uniqueness, intractability and exact algorithms: reflections on level-k phylogenetic networks

    Get PDF
    Phylogenetic networks provide a way to describe and visualize evolutionary histories that have undergone so-called reticulate evolutionary events such as recombination, hybridization or horizontal gene transfer. The level k of a network determines how non-treelike the evolution can be, with level-0 networks being trees. We study the problem of constructing level-k phylogenetic networks from triplets, i.e. phylogenetic trees for three leaves (taxa). We give, for each k, a level-k network that is uniquely defined by its triplets. We demonstrate the applicability of this result by using it to prove that (1) for all k of at least one it is NP-hard to construct a level-k network consistent with all input triplets, and (2) for all k it is NP-hard to construct a level-k network consistent with a maximum number of input triplets, even when the input is dense. As a response to this intractability we give an exact algorithm for constructing level-1 networks consistent with a maximum number of input triplets

    On Routing Disjoint Paths in Bounded Treewidth Graphs

    Get PDF
    We study the problem of routing on disjoint paths in bounded treewidth graphs with both edge and node capacities. The input consists of a capacitated graph GG and a collection of kk source-destination pairs M={(s1,t1),,(sk,tk)}\mathcal{M} = \{(s_1, t_1), \dots, (s_k, t_k)\}. The goal is to maximize the number of pairs that can be routed subject to the capacities in the graph. A routing of a subset M\mathcal{M}' of the pairs is a collection P\mathcal{P} of paths such that, for each pair (si,ti)M(s_i, t_i) \in \mathcal{M}', there is a path in P\mathcal{P} connecting sis_i to tit_i. In the Maximum Edge Disjoint Paths (MaxEDP) problem, the graph GG has capacities cap(e)\mathrm{cap}(e) on the edges and a routing P\mathcal{P} is feasible if each edge ee is in at most cap(e)\mathrm{cap}(e) of the paths of P\mathcal{P}. The Maximum Node Disjoint Paths (MaxNDP) problem is the node-capacitated counterpart of MaxEDP. In this paper we obtain an O(r3)O(r^3) approximation for MaxEDP on graphs of treewidth at most rr and a matching approximation for MaxNDP on graphs of pathwidth at most rr. Our results build on and significantly improve the work by Chekuri et al. [ICALP 2013] who obtained an O(r3r)O(r \cdot 3^r) approximation for MaxEDP

    Voting and Bribing in Single-Exponential Time

    Get PDF
    We introduce a general problem about bribery in voting systems. In the R-Multi-Bribery problem, the goal is to bribe a set of voters at minimum cost such that a desired candidate wins the manipulated election under the voting rule R. Voters assign prices for withdrawing their vote, for swapping the positions of two consecutive candidates in their preference order, and for perturbing their approval count for a candidate. As our main result, we show that R-Multi-Bribery is fixed-parameter tractable parameterized by the number of candidates for many natural voting rules R, including Kemeny rule, all scoring protocols, maximin rule, Bucklin rule, fallback rule, SP-AV, and any C1 rule. In particular, our result resolves the parameterized of R-Swap Bribery for all those voting rules, thereby solving a long-standing open problem and "Challenge #2" of the 9 Challenges in computational social choice by Bredereck et al. Further, our algorithm runs in single-exponential time for arbitrary cost; it thus improves the earlier double-exponential time algorithm by Dorn and Schlotter that is restricted to the unit-cost case for all scoring protocols, the maximin rule, and Bucklin rule

    A (3/2+ε)(3/2 + \varepsilon)-Approximation for Multiple TSP with a Variable Number of Depots

    Full text link
    One of the most studied extensions of the famous Traveling Salesperson Problem (TSP) is the {\sc Multiple TSP}: a set of m1m\geq 1 salespersons collectively traverses a set of nn cities by mm non-trivial tours, to minimize the total length of their tours. This problem can also be considered to be a variant of {\sc Uncapacitated Vehicle Routing} where the objective function is the sum of all tour lengths. When all mm tours start from a single common \emph{depot} v0v_0, then the metric {\sc Multiple TSP} can be approximated equally well as the standard metric TSP, as shown by Frieze (1983). The {\sc Multiple TSP} becomes significantly harder to approximate when there is a \emph{set} DD of d1d \geq 1 depots that form the starting and end points of the mm tours. For this case only a (21/d)(2-1/d)-approximation in polynomial time is known, as well as a 3/23/2-approximation for \emph{constant} dd which requires a prohibitive run time of nΘ(d)n^{\Theta(d)} (Xu and Rodrigues, \emph{INFORMS J. Comput.}, 2015). A recent work of Traub, Vygen and Zenklusen (STOC 2020) gives another approximation algorithm for {\sc Multiple TSP} running in time nΘ(d)n^{\Theta(d)} and reducing the problem to approximating TSP. In this paper we overcome the nΘ(d)n^{\Theta(d)} time barrier: we give the first efficient approximation algorithm for {\sc Multiple TSP} with a \emph{variable} number dd of depots that yields a better-than-2 approximation. Our algorithm runs in time (1/ε)O(dlogd)nO(1)(1/\varepsilon)^{\mathcal O(d\log d)}\cdot n^{\mathcal O(1)}, and produces a (3/2+ε)(3/2+\varepsilon)-approximation with constant probability. For the graphic case, we obtain a deterministic 3/23/2-approximation in time 2dnO(1)2^d\cdot n^{\mathcal O(1)}.ithm for metric {\sc Multiple TSP} with run time nΘ(d)n^{\Theta(d)}, which reduces the problem to approximating metric TSP.Comment: To be published at ESA 202

    Interval scheduling and colorful independent sets

    Full text link
    Numerous applications in scheduling, such as resource allocation or steel manufacturing, can be modeled using the NP-hard Independent Set problem (given an undirected graph and an integer k, find a set of at least k pairwise non-adjacent vertices). Here, one encounters special graph classes like 2-union graphs (edge-wise unions of two interval graphs) and strip graphs (edge-wise unions of an interval graph and a cluster graph), on which Independent Set remains NP-hard but admits constant-ratio approximations in polynomial time. We study the parameterized complexity of Independent Set on 2-union graphs and on subclasses like strip graphs. Our investigations significantly benefit from a new structural "compactness" parameter of interval graphs and novel problem formulations using vertex-colored interval graphs. Our main contributions are: 1. We show a complexity dichotomy: restricted to graph classes closed under induced subgraphs and disjoint unions, Independent Set is polynomial-time solvable if both input interval graphs are cluster graphs, and is NP-hard otherwise. 2. We chart the possibilities and limits of effective polynomial-time preprocessing (also known as kernelization). 3. We extend Halld\'orsson and Karlsson (2006)'s fixed-parameter algorithm for Independent Set on strip graphs parameterized by the structural parameter "maximum number of live jobs" to show that the problem (also known as Job Interval Selection) is fixed-parameter tractable with respect to the parameter k and generalize their algorithm from strip graphs to 2-union graphs. Preliminary experiments with random data indicate that Job Interval Selection with up to fifteen jobs and 5*10^5 intervals can be solved optimally in less than five minutes.Comment: This revision does not contain Theorem 7 of the first revision, whose proof contained an erro
    corecore